Refine Your Search

Topic

Author

Affiliation

Search Results

Collection

New CI & SI Engines and Components, 2018

2018-04-03
The papers in this collection cover topics regarding new CI and SI engines and components. This includes analytical, experimental, and computational studies covering hardware development, as well as design and analysis techniques.
Journal Article

A Unique Application of Gasoline Particulate Filter Pressure Sensing Diagnostics

2021-08-06
Abstract Gasoline particulate filters (GPFs) are important aftertreatment components that enable gasoline direct injection (GDI) engines to meet European Union (EU) 6 and China 6 particulate number emissions regulations for nonvolatile particles greater than 23 nm in diameter. GPFs are rapidly becoming an integral part of the modern GDI aftertreatment system. The Active Exhaust Tuning (EXTUN) Valve is a butterfly valve placed in the tailpipe of an exhaust system that can be electronically positioned to control exhaust noise levels (decibels) under various vehicle operating conditions. This device is positioned downstream of the GPF, and variations in the tuning valve position can impact exhaust backpressures, making it difficult to monitor soot/ash accumulation or detect damage/removal of the GPF substrate. The purpose of this work is to present a unique example of subsystem control and diagnostic architecture for an exhaust system combining GPF and EXTUN.
Journal Article

Fault Diagnosis Approach for Roller Bearings Based on Optimal Morlet Wavelet De-Noising and Auto-Correlation Enhancement

2019-05-02
Abstract This article presents a fault diagnosis approach for roller bearing by applying the autocorrelation approach to filtered vibration measured signal. An optimal Morlet wavelet filter is applied to eliminate the frequency associated with interferential vibrations; the raw measured signal is filtered with a band-pass filter based on a Morlet wavelet function whose parameters are optimized based on maximum Kurtosis. Autocorrelation enhancement is applied to the filtered signal to further reduce the residual in-band noise and highlight the periodic impulsive feature. The proposed technique is used to analyze the experimental measured signal of investigated vehicle gearbox. An artificial fault is introduced in vehicle gearbox bearing an orthogonal placed groove on the inner race with the initial width of 0.6 mm approximately. The faulted bearing is a roller bearing located on the gearbox input shaft - on the clutch side.
Journal Article

High Power-Density, High Efficiency, Mechanically Assisted, Turbocharged Direct-Injection Jet-Ignition Engines for Unmanned Aerial Vehicles

2019-05-02
Abstract More than a decade ago, we proposed combined use of direct injection (DI) and jet ignition (JI) to produce high efficiency, high power-density, positive-ignition (PI), lean burn stratified, internal combustion engines (ICEs). Adopting this concept, the latest FIA F1 engines, which are electrically assisted, turbocharged, directly injected, jet ignited, gasoline engines and work lean stratified in a highly boosted environment, have delivered peak power fuel conversion efficiencies well above 46%, with specific power densities more than 340 kW/liter. The concept, further evolved, is here presented for unmanned aerial vehicle (UAV) applications. Results of simulations for a new DI JI ICE with rotary valve, being super-turbocharged and having gasoline or methanol as working fuel, show the opportunity to achieve even larger power densities, up to 430 kW/liter, while delivering a near-constant torque and, consequently, a nearly linear power curve over a wide range of speeds.
Journal Article

Process Regulations and Mechanism of WEDM of Combustor Material

2019-06-07
Abstract This study discusses the experimental investigation on WEDM of combustor material (i.e., nimonic 263). Experimentation has been executed by varying pulse-on time (Ton), pulse-off time (Toff), peak current (Ip), and spark gap voltage (Sv). Material removal rate (MRR), surface roughness (SR), and wire wear rate (WWR) are employed as process performance characteristics. Experiments are designed as per the box-Behnken design technique. Parametric optimization has also been performed using response surface methodology. Besides this, field-emission scanning electron microscope (FE-SEM) and an optical microscope are utilized to characterize WEDMed and worn-out wire surfaces. It is observed that both surfaces contain micro-cracks, craters, spherical droplets, and a lump of debris. Furthermore, the mechanism of recast layer formation has been critically evaluated to apprehend a better understanding of the technique. The key features of the experimental procedure are also highlighted.
Journal Article

Using Numerical Simulation to Obtain Length of Constant Area Section in Scramjet Combustor

2020-03-16
Abstract Constant area section length downstream to the fuel injection point is a crucial dimension of scramjet duct geometry. It has a major contribution in creating the maximum effective pressure inside the combustor that is required for propulsion. The length is limited by the thermal choking phenomenon, which occurs when heat is added in a flow through constant area duct. As per theory, to avoid thermal choking the constant area section length depends upon the inlet conditions and the rate of heat addition. The complexity related to mixing and combustion process inside the supersonic stream makes it difficult to predict the rate of heat addition and in turn the length. Recent efforts of simulating the reacting flow inside scramjet combustors are encouraging and can be useful in this regard. The presented work attempts to use simulation results of scramjet combustion for predicting the constant area section length for a typical scramjet combustor.
Journal Article

Thermal Energy Performance Evaluation and Architecture Selection for Off-Highway Equipment

2021-08-31
Abstract An accurate and rapid thermal model of an axle-brake system is crucial to the design process of reliable braking systems. Proper thermal management is necessary to avoid damaging effects, such as brake fade, thermal cracking, and lubricating oil degradation. In order to understand the thermal effects inside of a lubricated braking system, it is common to use Computational Fluid Dynamics (CFD) to calculate the heat generation and rejection. However, this is a difficult and time-consuming process, especially when trying to optimize a braking system. This article uses the results from several CFD runs to train a Stacked Ensemble Model (SEM), which allows the use of machine learning (ML) to predict the systems’ temperature based on several input design parameters. The robustness of the SEM was evaluated using uncertainty quantification.
Journal Article

Effect of Fuel-to-Air Ratio on Oxidation and Interfacial Structure in Galvanizing of a Dual-Phase Steel

2021-04-19
Abstract Automotive-grade high-strength steels are galvanized for improved corrosion resistance. However, selective oxidation of alloying elements during annealing heat-treatment may influence the subsequent zinc (Zn) coating quality. The formation of internal and external oxides depends on the alloy composition, especially the Si/Mn ratio, and the oxygen potential of the annealing atmosphere. In this work, a dual-phase (DP) steel was intercritically annealed with varied fuel-to-air ratios in a direct-fired furnace and then galvanized in a Zn bath with 0.2 wt% Al. The type of internal and external oxides and the interfacial structures between the steel substrate, the Al-Fe-Zn inhibition layer, and the Zn coating were examined by using site-specific focused ion beam (FIB) and transmission electron microscopy (TEM).
Journal Article

Semi-empirical Combustion Efficiency Prediction of an Experimental Air-Blasted Tubular Combustor

2020-10-19
Abstract The preliminary gas turbine combustor design process uses a huge amount of empirical correlations to achieve more optimized designs. Combustion efficiency, in relation to the basic dimensions of the combustor, is one of the most critical performance parameters. In this study, semi-empirical correlations for combustion efficiencies are examined and correlation coefficients have been revised using an experimental air-blasted tubular combustor that uses JP8 kerosene aviation fuel. Besides, droplet diameter and effective evaporation constant parameters have been investigated for different operating conditions. In the study, it is observed that increased air velocity significantly improves the atomization process and decreases droplet diameters, while increasing the mass flow rate has a positive effect on the atomization—the relative air velocity in the air-blast atomizer increases and the fuel droplets become finer.
Collection

Abnormal SI Combustion, 2015

2015-04-14
This technical paper collection focuses on abnormal SI combustion processes including spark knock and preignition. Papers cover both 4-stroke and 2-stroke engines characterized by 1) ignition by an external energy source that serves to control combustion phasing, and 2) a combustion rate that is limited by flame propagation.
Collection

Dual Fuel Combustion Process, 2014

2014-04-01
This technical paper collection contains papers describing experiments and test data, simulation results focused on applications, fuel/additive effects, and RCCI (reactivity-controlled compression ignition).
Collection

Abnormal SI Combustion, 2014

2014-04-01
This technical paper collection focuses on abnormal SI combustion processes including spark knock and preignition. Papers cover both 4-stroke and 2-stroke engines characterized by 1) ignition by an external energy source that serves to control combustion phasing, and 2) a combustion rate that is limited by flame propagation.
Collection

Particle Emissions from Combustion Sources, 2014

2014-04-01
This technical paper collection includes papers on PM measurement methods, soot generation, alternative methods of PM mass determination, in-cylinder contol of emissions, the effects of EGR, biodiesel fuels, duel fuel systems, soot emissions modeling, PM emissions from gasoline engines, including GDI, ethanol effects, and modeling.
Collection

High Efficiency IC Engines Concepts, 2017

2017-03-28
The papers in this collection focuses on technologies such as advanced and partially mixed combustion, cooled EGR boosting, ignition and direct injection technologies, pressure boosting, intelligent combustion, thermal efficiency, fully variable valvetrains, and other new and developing technologies.
Collection

Abnormal SI Combustion, 2018

2018-04-03
The papers in this collection focus on abnormal SI combustion processes including spark knock and preignition. Papers cover both 4-stroke and 2-stroke engines characterized by 1) ignition by an external energy source that serves to control combustion phasing, and 2) a combustion rate that is limited by flame propagation.
Collection

RCCI and Dual-Fuel Low Temperature Combustion, 2015

2015-04-14
Computational modeling and analysis of Reactivity Controlled Compression Ignition (RCCI) combustion. Papers focus on analyzing and improving RCCI combustion using novel injection strategies, combustion chamber designs, and fueling combinations.
Journal Article

Influence of Injection Timing and Piston Bowl Geometry on PCCI Combustion and Emissions

2009-04-20
2009-01-1102
Premixed Charge Compression Ignition (PCCI), a Low Temperature Combustion (LTC) strategy for diesel engines is of increasing interest due to its potential to simultaneously reduce soot and NOx emissions. However, the influence of mixture preparation on combustion phasing and heat release rate in LTC is not fully understood. In the present study, the influence of injection timing on mixture preparation, combustion and emissions in PCCI mode is investigated by experimental and computational methods. A sequential coupling approach of 3D CFD with a Stochastic Reactor Model (SRM) is used to simulate the PCCI engine. The SRM accounts for detailed chemical kinetics, convective heat transfer and turbulent micro-mixing. In this integrated approach, the temperature-equivalence ratio statistics obtained using KIVA 3V are mapped onto the stochastic particle ensemble used in the SRM.
Journal Article

Investigations into the Effects of Thermal and Compositional Stratification on HCCI Combustion – Part II: Optical Engine Results

2009-04-20
2009-01-1106
The effect that thermally and compositionally stratified flowfields have on the spatial progression of iso-octane-fueled homogeneous charge compression ignition (HCCI) combustion were directly observed using highspeed chemiluminescence imaging. The stratified in-cylinder conditions were produced by independently feeding the intake valves of a four-valve engine with thermally and compositionally different mixtures of air, vaporized fuel, and argon. Results obtained under homogeneous conditions, acquired for comparison to stratified operation, showed a small natural progression of the combustion from the intake side to the exhaust side of the engine, a presumed result of natural thermal stratification created from heat transfer between the in-cylinder gases and the cylinder walls. Large differences in the spatial progression of the HCCI combustion were observed under stratified operating conditions.
Journal Article

Experimental Investigation of Intake Condition and Group-Hole Nozzle Effects on Fuel Economy and Combustion Noise for Stoichiometric Diesel Combustion in an HSDI Diesel Engine

2009-04-20
2009-01-1123
The goal of this research is to investigate the physical parameters of stoichiometric operation of a diesel engine under a light load operating condition (6∼7 bar IMEP). This paper focuses on improving the fuel efficiency of stoichiometric operation, for which a fuel consumption penalty relative to standard diesel combustion was found to be 7% from a previous study. The objective is to keep NOx and soot emissions at reasonable levels such that a 3-way catalyst and DPF can be used in an aftertreatment combination to meet 2010 emissions regulation. The effects of intake conditions and the use of group-hole injector nozzles (GHN) on fuel consumption of stoichiometric diesel operation were investigated. Throttled intake conditions exhibited about a 30% fuel penalty compared to the best fuel economy case of high boost/EGR intake conditions. The higher CO emissions of throttled intake cases lead to the poor fuel economy.
X